Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
Bioorg Chem ; 114: 105139, 2021 09.
Article in English | MEDLINE | ID: covidwho-1292618

ABSTRACT

A series of scaffolds namely aurones, 3-indolinones, 4-quinolones and cinnamic acid-piperazine hybrids, was designed, synthesized and investigated in vitro against influenza A/H1N1pdm09 virus. Designed molecules adopted different binding mode i.e., in 430-cavity of neuraminidase, unlike sialic acid and oseltamivir in molecular docking studies. All molecules reduced the viral titer and exhibited non-cytotoxicity along with cryo-protective property towards MDCK cells. Molecules (Z)-2-(3'-Chloro-benzylidene)-1,2-dihydro-indol-3-one (2f), (Z)-2-(4'-Chloro-benzylidene)-1,2-dihydro-indol-3-one (2g) and 2-(2'-Methoxy-phenyl)-1H-quinolin-4-one (3a) were the most interesting molecules identified in this research, endowed with robust potencies showing low-nanomolar EC50 values of 4.0 nM, 6.7 nM and 4.9 nM, respectively, compared to reference competitive and non-competitive inhibitors: oseltamivir (EC50 = 12.7 nM) and quercetin (EC50 = 0.56 µM), respectively. Besides, 2f, 2g and 3a exhibited good neuraminidase inhibitory activity in sub-micromolar range (IC50 = 0.52 µM, 3.5 µM, 1.3 µM respectively). Moreover, these molecules were determined as non-competitive inhibitors similar to reference non-competitive inhibitor quercetin unlike reference competitive inhibitor oseltamivir in kinetics studies.


Subject(s)
Antiviral Agents/pharmacology , Influenza A Virus, H1N1 Subtype/drug effects , Small Molecule Libraries/pharmacology , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Docking Simulation , Molecular Structure , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL